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Abstract — A two-dimensionrd analytical model has been developed for

the potential distribution in submicron GaAs MESFET’S. The potential

distribution is obtained by solving Poisson’s equation with nonrectangnlar

boundary conditions using a perturbation method. The expression for the

~tential is used to derive the current-voltage relation for GaAs MES-

FET’s having channel Iengtbs ranging from 0.2 to 0.9 pm. The model is

applicable in the linear, the satoration, and the subthreshold regimes of the

current-voltage characteristics. Numerically simulated results are com-

pared with experimental data and are found to be in good agreement.

I. INTRODUCTION

Gallium arsenide (GaAs) FET’s used in high-performance mi-

crowave and millimeter-wave circuits increasingly require submi-

cron feature sizes [1], [2]. The electrical characteristics of these

scaled-down devices are known to be greatly influenced by the

two-dimensional potential distribution and high electric field

effects [3]–[5].

Analytical models based on the one-dimensional gradual chan-

nel approximation method [6] do not adequately account for

these effects. The dependence of the electrical characteristics on

the electric field near the drain end has been recognized by many

authors, including Dacey and Ross [7], Pucel and Haus [8],

Yamaguchi et al. [9], and Fair [10]. Recently, Meindl and Marshall

[11] proposed a two-dimensional model for characterizing the

kubthreshold operation of Si MESFET’S. Kimiyoshi and Masahiro

[12] have also presented a two-dimensionaf model to predict the

&rrent-voltage relation in the saturation region of GaAs MES-

FET’s. Most of the models reported in the literature are applica-

ble in a limited region, such as the saturation or subthreshold

region. In this paper a two-dimensional analytical model, ac-

counting for high electric field and two-dimensional effects, is

presented to characterize the electrical behavior of submicron

GaAs MESFET’S. The model is applicable in the subthreshold,

the linear, and to some degree the saturation regimes. In addi-

tion, it is useful for both normally off and normally on devices.

II. l%EORY

The approach is based on the determination of the two-dimen-

sional potential distribution in the depletion region under the

Schottky gate of a MESFET. The formulation is presented in this

section and details are described in Section III. The potential is
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Fig. 1, Slmphfled GaAs MESFET geometry

then used to derive the current–voltage relation in the channel.

This is treated in Section IV.

The totaf electrostatic potential in the depletion region under

the gate +(x, y) is obtained by solving the Poisson equation

using appropriate boundary conditions. The Poisson equation is

given by

f32+(x, y) azo(x,y) qNo

8X2 + ~y2 =–~.
(1)

Here ND is the doping concentration (assumed to be uniform), q

is the electronic charge, and t is the permittivity. Following the

approach in [11], the potentiaf $(x, y) in (1) above is expressed

as a superposition of two functions, U( x, y) and

that

+(x, y)=u(x, y)++(x, y)

where the functions U( x, y) and ~ (x, y) satisfy

equations:

dz$(x, y) + dz+(.x, y)

ax? =0
dyz

dzu(x, y) + t?zu(x, y) qN~

ax2 dy~ ‘– c

~(X, y), such

(2)

the following

(3)

(4)

The solution to (3) is obtained using the perturbation method

[13]. The perturbation method involves the solution of a set of

Laplace equations in the rectangular region bounded by CO (see

Fig. 1). The actual potential Y (x, y) in the nonrectangular region

bounded by C is then expressed in terms of +0, ~1, and higher

order components using a perturbation parameter A (O < A < 1).

An assumed solution is of the form

$=+o+A+l+ A~#2+ 13+3+.... (5)

The substitution of (5) into (3) results in a sequence of Laplace

equations involving the #‘s. The condition at the lower boundary

for the Laplace equations in terms of +0, +1, +2, etc., is deter-

mined by relating the conditions on the actual boundary C (see

Fig. 1) to CO of the hypothetical rectangle. The other boundary

conditions for the ~‘s require an expression for U(x, y). This is

obtained from the solution of (4) assuming significant variations

along the y axis. Since the field ~ ~ (x, y )/3 y approaches zero at

the depletion edge, neglecting the x variation in the boundary c

would not cause significant error. The solution involves integrat-

ing (4) twice with respect to y and using appropriate boundary
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conditions. This results in

(2h(x) --y)
U(x, y) =vb, +lfq+@VDy ~c — (6)

where v~, is the built-in voltage and Vg is the gate voltage.

Details of the perturbation approach are given below.

III. EVALUATION OF THE POTENTIAL +(x, y)

In most FET analyses, the depletion edge boundary is invari-

ably replaced [9], [11] by the totaf channel depth. However, the

perturbation method allows the solution of the Laplace equation

using the nonrectangular boundary C representing the depletion

edge. The Laplace equations for the ~‘s are obtained by substi-

tuting (5) into (3) to get

O=:(+O+A+, +A’+2+A’$3+ ...)

+$(+O+A$l +A’+2+X’+3 +”..). (7)

Regroup the terms in the above equation as follows:

‘=(~+%-}+’{++%)

‘%$+%)+ ’3(%’3}
‘A4F’+%++””” (8)

Since A is nonzero, the above equation leads to the following

sequence of Laplace equations:

(9)

(lo)

Next, determine the boundary conditions for the Laplace equa-

tions. To do this notice that each point on C can be obtained by

an outward normaf displacement of points on ~j. Let each point

on Co be displaced along the outward normal by an amount

Ah ( x). Then the condition J $/d y = O on C becomes

a+ a2+ 12h2(x) a3~
o=—

J-J’ c“

+Ah(x)n +—y
ay co 2! ay ~.

A3h3( X) ~4~

+——
3!

dyd co
+.. . . (11)

Next substitute (5) into (11) to get

a
o= —(lj/o+A+l+RJ/2+ . ..)ICO

ay

A2h2(x) a3
+

2! 7(+ O+A+1+A’+2+ ““”)[co

A3h3(x) a’
ay4(+o+ ~+1+A2+2+ ”””)lco +:””. (12)+——

3!

Equation (12) leads to the following sequence of boundary condi-

tions:

a+()
==0 for i)

Jy co
(1.3)

a~l d 2+0

JY co
+h(x)—— =0 for 2.

ay2 co
(1.4)

Thus the Laplace equation with the associated set of boundary

conditions for the fundamental potential ~{) (x, y) and the first

harmonic potential t)~(x, y) are as follows:

Laplace equation:

d jboa 2+0
—+—

~Jt2 a.y2
=0. (l!ki)

Boundary conditions:

ljo(x,o)=o (15b)

~+o(x, h,)

ay
=0 (15C)

[
*o(o>.Y)=- Pk+K+*(h,-y)] (15d)

[
$o(Lg>y) ‘vD -- ‘b, +~+ 1~(hti-Y) (l!ie)

Laplace equation:

(16a)

Boundary conditions:

+I(x,o:) =0 (L5b)

iwl(x, h.) J+; (x, hs)

ay -
=–h(x)

ayz
(16c)

+,( O, Y:) =0 (16d)

+l(~g, .Y:l =0. (16e)

The ‘solutions to (15a) anc~ (16a) with the corresponding bound-

ary conditions can be obtained using Fourier series and are given

by [14]

[

(2n+l)?’rx (2n+l)Tr(Lg -x)

+0= E ~,, si~ ~ — + B,, Sinh
~=i) , 2h, 1

7f(2n +1) y
. sin

2h,
(17)

(18)

Combining (6), (17), and (18) gives the complete expression ~for

+(.x, y) as

(2h(x)- y)
@’vb, + ~+ @Dy-~

03

[

(2n + 1)7x
+ ~ A,, sinh — —+

~=o 21k$

(2,, +1) ‘iry
. sin

2h,

B smh ‘2n+1)n(Lg -~),.
!,

2h, “1
,C.3

[

~(2n +1)x Sinh (2n +l)z-y
+ i z C,l sin -—y—

Lg 1 (19)
~=o ‘,~
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Fig. 2. Channel potential versus channel length. Curves: with perturbation

Curve b: without perturbation.

with

4
A,> =

(2n+l)mL,
r(2n +1) sinh

2h,

[

%Nr)hsh~ _v _v
. vD–

ary2n +1)2 b’ G1 (20)

–4
B,, =

[

4qN~h;

(2n +l)~Lg ,.#(~n +1)2 + ‘bi + VG
7r(2n +1) sinh 1

2h,

(21)

and also

8(4,-%)mlh. (2n+l)~L,
— z cosh

L ~osh (2n +l)~h,

(1

4h2
2h,

x l+J
Lg L;

2A,, ml (Zn +l)~Lg (22)
+ z sinh

~osh (2~ + 1) fib,

{}

4h2
2h,

l+:
Lg L;

Fig. 2 shows a plot of the potential distribution along the

depletion edge boundary C of Fig. 1. Curve b was obtained by

neglecting the perturbation (last) term of (19), and curve a was

obtained by using all terms in the equation. The drain voltage in

either case was VD = 2.0 V. The figure shows that eliminating the

perturbation term reduces the potential along the depletion edge

considerably. For instance, the change is about 70 percent at the

drain end.
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Fig. 3. Current-voltage characteristics for a GaAs MESFET with L~ = 0.99
pm.

IV. I–V CHARACTERISTICS

The governing equation for the drain current, lD, of GaAs

MESFET’S, assuming no generation and recombination of carri-

ers in the channel, is given by

ID= {jJdS, J= qNDp,l E. (23)

Here, p,, is the mobility and E is the electric field within the

channel. Equation (23) also neglects any contribution due to

Gunn domain formation. In the channel we use the value of E

which exists at the depletion edge boundary C. This is justified as

variations along the y axis are negligible. Using (19) we get

a+
E=—

ax ~. = i’ ‘2n2pm
~=o s

[

. A Cosh (2n+l)vrx _ B Cosh (2n+l)T(Lg -.X)

,?
2h, “ 2h, 1

[

XI (2n+l)nCm si~ (2n+l)mh, Tr(2n +1)x

+A~
2h, Lg

Cos
~=o 1Lg

Substituting (24) into (23) yields

[

. ~ Sifi (2n +l)~h, n(2n +1)x ~zdh(x)
,,

Lg
Cos

L8 1
m (2n+l)7 .-~, ~

J J[

A Cosh (2. +l)nx

+z2h ,,
~=o s a—h, O 2h,

1 )
(2n+l)m(Lg-~) &,&(x)

– B,, cosh
2hg

(24)

(25)



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQIJES, VOL. 37, NO. 9, SEPTEMBER 1989 1487

. MEASURED

:6 : s~”rJLATE~ .

~ .

%4

s
z .

52 .

n

o
I 1 I ! 8 1 1 I 1 I r

000102 0304 0506010809101 I

ORAIN VOLIAC[ (V)

F,g 4. Current-voltage characteristics for a GaAs MESFET with L.x = 0.53

pm,

A linear approximation to h(x) is

h,, –h,
h(x)=r X–h,

s [

V. + Vb, + Vg
h,, =a —

~

Substituting (26) into (25) and integrating gives

(26)

[

VD 2

r

Vb, -t VT
.——

~ #(2n +1)2 ~

Numerically simulated current–voltage characteristics using

(27) are compared with experimentally determined results [12],

[16] for subrnicron GaAs MESFET’S with gate lengths of 0.99

pm, 0.53 pm, and 0.21 pm, as shown in Figs. 3, 4, and 5. The

data used in the simulation were obtained from [12] and [16] and

the expression used for the field-dependent mobility is due to

Fair- [10].

V. DISCUSSION

The two-dimensionaf analytical MESFET models reported in

the literature solve the Poisson equation using rectangul~ bound-

ary conditions in the depletion region. The perturbation method

allows one to obtain the potential distribution in a nonrectangu-

lar box which approximates the true boundary conditions. This

results in the derivation of an I– V equation which not only holds

good in the subthreshold region of submicron devices but also is

applicable in the linear and saturation regimes. Figs. 3– 5 show ~

agreement of over 95 percent between the theoretical and the

measured 1– V characteristics in the saturation regime. This

o I J I

OftAlll VOIIAC[ (V)

Fig 5. Current-voltage characteristws for a GaAs MESFET with I.g = O 21

pm.

agreement is lower for the linear portion of the 1– V characteris-

tics. The deviation in the linear region is due in part to t]he

limitations in the empirical expression used for the field-depen-

dent mobility. Work is in p regress to incorporate our earlier work

on hot electron transport, such as velocity overshoot [15] effects,

to model the 1– V equation.
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