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An Analytical Two-Dimensional Perturbation Method
to Model Submicron GaAs MESFET’s

E DONKOR, MEMBER, IEEE, AND
F. C. JAIN, SENIOR MEMBER, IEEE

Abstract -~ A two-dimensional analytical model has been developed for
the potential distribution in submicron GaAs MESFET’s. The potential
distribution is obtained by solving Poisson’s equation with nonrectangular
boundary conditions using a perturbation method. The expression for the
potential is used to derive the current-voltage relation for GaAs MES-
FET’s having channel lengths ranging from 0.2 to 0.9 pm. The model is
applicable in the linear, the saturation, and the subthreshold regimes of the
current—voltage characteristics. Numerically simulated results are com-
pared with experimental data and are found to be in good agreement.

1. INTRODUCTION

Gallium arsenide (GaAs) FET’s used in high-performance mi-
crowave and millimeter-wave circuits increasingly require submi-
cron feature sizes [1], [2]. The electrical characteristics of these
scaled-down devices are known to be greatly influenced by the
two-dimensional potential distribution and high electric field
effects [3]-[5].

Analytical models based on the one-dimensional gradual chan-
nel approximation method [6] do not adequately account for
these effects. The dependence of the electrical characteristics on
the electric field near the drain end has been recognized by many
authors, including Dacey and Ross [7], Pucel and Haus (8],
Yamaguchi et al. [9], and Fair [10]. Recently, Meindl and Marshalt
[11] proposed a two-dimensional model for characterizing the
subthreshold operation of Si MESFET’s. Kimiyoshi and Masahiro
[12] have also presented a two-dimensional model to predict the
current—voltage relation in the saturation region of GaAs MES-
FET’s. Most of the models reported in the literature are applica-
ble in a limited region, such as the saturation or subthreshold
region. In this paper a two-dimensional analytical model, ac-
counting for high electric field and two-dimensional effects, is
presented to characterize the electrical behavior of submicron
GaAs MESFET’s. The model is applicable in the subthreshold,
the linear, and to some degree the saturation regimes. In addi-
tion, it is useful for both normally off and normally on devices.

II. THEORY

The approach is based on the determination of the two-dimen-
sional potential distribution in the depletion region under the
Schottky gate of a MESFET. The formulation is presented in this
section and details are described in Section III. The potential is
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Fig. 1. Simplified GaAs MESFET geometry

then used to derive the current-voltage relation in the channel.
This is treated in Section IV.

The total electrostatic potential in the depletion region under
the gate ¢(x, y) is obtained by solving the Poisson equation
using appropriate boundary conditions. The Poisson equation is
given by

3% ( x, 3% ( x, N,
o(ny)  (x.y) Ny (1)
ax? 2

dy €

Here Nj, is the doping concentration (assumed to be uniform), g
is the electronic charge, and ¢ is the permittivity. Following the
approach in [11], the potential ¢(x, y) in (1) above is expressed
as a superposition of two functions, U(x, y) and ¢(x, y), such
that

o(x,y) =U(x,y)+¢(x, p) (2)

where the functions U(x, y) and {(x, y) satisfy the following
equations:

% (x,y) N
ax? dy

82#/()62, ¥) ~o )

a*U(x, y) . ?U(x, y) N

—-— 4
dx? ay? € (4)

The solution to (3) is obtained using the perturbation method
[13]. The perturbation method involves the solution of a set of
Laplace equations in the rectangular region bounded by C, (see
Fig. 1). The actual potential ¢/(x, y) in the nonrectangular region
bounded by C is then expressed in terms of ¥, y;, and higher
order components using a perturbation parameter A (0 <A <1).
An assumed solution is of the form

¢=‘P0+>‘¢1+>‘2¢2+>\3¢3+"'~ (5)

The substitution of (5) into (3) results in a sequence of Laplace
equations involving the {’s. The condition at the lower boundary
for the Laplace equations in terms of ¥, ¥, ¥,, etc., is deter-
mined by relating the conditions on the actual boundary C (see
Fig. 1) to G, of the hypothetical rectangle. The other boundary
conditions for the {’s require an expression for U(x, y). This is
obtained from the solution of (4) assuming significant variations
along the y axis. Since the field d¢/(x, y)/dy approaches zero at
the depletion edge, neglecting the x variation in the boundary C
would not cause significant error. The solution involves integrat-
ing (4) twice with respect to y and using appropriate boundary
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conditions. This results in

(2h(x) - y)
2 ©®

where Vy, is the built-in voltage and V, is the gate voltage.
Details of the perturbation approach are given below.

U(x,p) =Vy +V, +qNpy

III. EVALUATION OF THE POTENTIAL ¥/(x, ¥)

In most FET analyses, the depletion edge boundary is invari-
ably replaced [9], [11] by the total channel depth. However, the
perturbation method allows the solution of the Laplace equation
using the nonrectangular boundary C representing the depletion
edge. The Laplace equations for the {’s are obtained by substi-
tuting (5) into (3) to get

2

a
0=~8x—2(\p0+>\¢1+)\2¢2+)\3¢3+ e

2

+7(4/0+7\¢1+>\2¢2+)\3¢3+ ) ()

Regroup the terms in the above equation as follows:
82 62 32 aZ
= 11/20 + 4’20 +A 11/21 + 4}21
ax dy ax dy
a2 32 3’ 32
+ X ‘Pf + 4/,2 + N % + —-—"!/23
ax- dy- ax dy
AR
M ——— 8
{ axt  3y? )

Since A is nonzero, the above equation leads to the following
sequence of Laplace equations:

32 al

—‘{0 + -i? =0  for X’ (9)
ax- ay- '

I 3%y

PR a7 0 for X. (10)

Next, determine the boundary conditions for the Laplace equa-
tions. To do this notice that each point on C can be obtained by
an outward normal displacement of points on C,. Let each point
on (, be displaced along the outward normal by an amount
Ah(x). Then the condition dy /8y =0 on C becomes

Fi 2 >\2h2 83 B
0= ¥ an(x )—‘P + fx)—%
3y,cn y Co 2! dy
}\3h3 a4
() 0% w
3! ay
Next substitute (5) into (11) to get
ad
O=8_y(¢o+>‘¢1+>\2¢2+'”)|co
a2 5
+>\h(x) (¢O+A¢1+>\¢2 e,
Nh?(x) 83
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Equation (12) leads to the following sequence of boundary condi-
tions:

d
S =0 for X (13)
dy o
p] 2
oh +h(x)= % =0 for X, (14)
d
y Co Co

Thus the Laplace equation with the associated set of boundary
conditions for the fundamental potential ,(x, y) and the first
harmonic potential ¥, (x, ) are as follows:

Laplace equation:

Dy I,
2o, 15
92 ay? (152)
Boundary conditions:
Yo(x,0) =0 (15b)
Yo x, hy
Molxihy) _ (15¢)
dy
qN
V0(0.3) == [ Vo + Vot 20 (h,— y) (13d)
qND.V "
Yo Ly, y) =Vp— [Vbl Vot (- y)}. (15¢)
Laplace equation:
% d*
’bl - + 4:1 = 0. (16a)
9x? ay~
Boundary conditions:
$1(x.,0) =0 (16b)
Y (x, hy) d
¥y ( )-=—h( RALASEALTA \Po(x 5) (16¢)
dy Iy
‘I’l(oa y\) =0 (16‘d)
$(L,,»)=0 (16¢)

The solutions to (15a) and (16a) with the corresponding bound-
ary conditions can be obtained using Fourier series and are given
by [14]

= (2n+1)=x (2n+1)y7(L, - x)
=Y | 4,sinh <~ 4 B,sinh :
\PO ngo 2 St 2h§‘ n SL 2’h§‘
7(2n+1)y

.sip ——~ 17
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o a(2n+1)x 7(2n+1)y

Y= L Gsin — s : (18)
n=0 g Lg

Combining (6), (17), and (18) gives the complete expression for
é(x, y) as

2h(x)—y
o=V, tV; ”'”qND)’uz) )
€
® 2n+1)ax (2n+1)y7(L,—x
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Fig. 2. Channel potential versus channel length. Curve «: with perturbation.

Curve b: without perturbation.
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Fig. 2 shows a plot of the potential distribution along the
depletion edge boundary C of Fig. 1. Curve b was obtained by
neglecting the perturbation (last) term of (19), and curve a was
obtained by using all terms in the equation. The drain voltage in
either case was V;, = 2.0 V. The figure shows that eliminating the
perturbation term reduces the potential along the depletion edge
considerably. For instance, the change is about 70 percent at the
drain end.
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IV. 1-V CHARACTERISTICS

The governing equation for the drain current, I, of GaAs
MESFET’s, assuming no generation and recombination of carri-
ers in the channel, is given by

J= qNDp'nE'

I,= f Jds, (23)

Here, p, is the mobility and E is the electric field within the
channel. Equation (23) also neglects any contribution due to
Gunn domain formation. In the channel we use the value of E
which exists at the depletion edge boundary C. This is justified as
variations along the y axis are negligible. Using (19) we get

d¢
E=.___
dx

® (2n+l)w

Co n=0 2h,

~[A,,cosh (2n+1)7rx_ h(2n+1)7r(Lg‘x)]
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Substituting (24) into (23) yields
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A linear approximation to 4(x) is

hzl - hv
h(x) == —X—h,

g P

(26)

Substituting (26) into (25) and integrating gives

I gNpp W, Vp+Vy, +V, Ve TV,
DT -
L 7 7
5 o
woo 2n+1l)m
v, 2 Vo 4 7,
v, '772(2n-l—1)2 v,
VotV +V.  [Vo+V
Iy e S (27)
v, Z

Numerically simulated current-voltage characteristics using
(27) are compared with experimentally determined results [12],
[16] for submicron GaAs MESFET’s with gate lengths of 0.99
pm, 0.53 pm, and 0.21 pm, as shown in Figs. 3, 4, and 5. The
data used in the simulation were obtained from [12] and [16] and
the expression used for the field-dependent mobility is due to
Fair [10]. \

V. DiscussioNn

The two-dimensional analytical MESFET models reported in
the literature solve the Poisson equation using rectangular bound-
ary conditions in the depletion region. The perturbation method
allows one to obtain the potential distribution in a nonrectangu-
lar box which approximates the true boundary conditions. This
results in the derivation of an 7-V equation which not only holds
good in the subthreshold region of submicron devices but also is
applicable in the linear and saturation regimes. Figs. 3—5 show an
agreement of over 95 percent between the theoretical and the
measured J-V characteristics in the saturation regime. This
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agreement is lower for the linear portion of the -V characteris-
tics. The deviation in the linear region is due in part to the
limitations in the empirical expression used for the field-depen-
dent mobility. Work is in progress to incorporate our earlier work
on hot electron transport, such as velocity overshoot [15] effects,
to model the -V equation. '
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